首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12301篇
  免费   1007篇
  国内免费   831篇
工业技术   14139篇
  2024年   12篇
  2023年   474篇
  2022年   570篇
  2021年   474篇
  2020年   513篇
  2019年   436篇
  2018年   445篇
  2017年   469篇
  2016年   304篇
  2015年   232篇
  2014年   413篇
  2013年   473篇
  2012年   542篇
  2011年   744篇
  2010年   482篇
  2009年   589篇
  2008年   525篇
  2007年   762篇
  2006年   685篇
  2005年   591篇
  2004年   544篇
  2003年   524篇
  2002年   458篇
  2001年   420篇
  2000年   398篇
  1999年   318篇
  1998年   258篇
  1997年   226篇
  1996年   171篇
  1995年   176篇
  1994年   142篇
  1993年   125篇
  1992年   149篇
  1991年   149篇
  1990年   139篇
  1989年   115篇
  1988年   36篇
  1987年   14篇
  1986年   11篇
  1985年   4篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
1.
The micro-powder injection molding (micro-PIM) process has the potential to bridge the gap between the design and manufacturing of micro-components that are often used in small and handy devices. Numerical modeling helps to analyze and overcome various difficulties of micro-PIM. In the present work, a numerical model is developed to predict the powder–binder separation (a common defect in PIM and especially severe in micro-PIM) during the injection of an alumina feedstock. A powder–binder separation criterion is proposed dealing with applied injection pressure and friction force between the powder and binder. An indirect comparison of feedstock travel time between two locations is used to validate the model. The predicted segregation from the simulated result is supported by a qualitative experimental measurement. The developed model can be used to optimize injection parameters to get a defect-free product.  相似文献   
2.
《Ceramics International》2022,48(21):31738-31745
In this study, novel polyborosilazane-derived SiBCN(O) ceramic was used as self-healing component in self-healing Cf/SiBCN(O) composite, which was prepared by polymer infiltration and pyrolysis (PIP) process. Molecular-level structure design of boron-containing ceramic precursors was utilized to achieve uniform dispersion of boron-containing self-healing components in prepared composites. No elemental diffusion was observed at the interface of ceramic matrix and carbon fibers, which resulted in stable SiBCN(O) structure. In addition, boron was uniformly distributed in Cf/SiBCN(O) composite ceramic matrix, which was beneficial for self-healing of cracks. Cracks and indentations were able to heal at high temperatures in air. The best crack-healing behavior occurred in air atmosphere at 1000 °C, with nearly complete crack healing. This excellent self-healing behavior was achieved because silicon and boron atoms in SiBCN(O) ceramic reacted with available oxygen at high temperatures to form SiO2(l), B2O3(l), and B2O3·xSiO2 liquid phases, which effectively filled cracks. In general, as-prepared Cf/SiBCN(O) composite exhibited excellent self-healing properties and shows great application potential in high-temperature environment applications such as aviation, aerospace, and nuclear power.  相似文献   
3.
Low-thermal conductivity ceramics play an indispensable role in maximizing the efficiency and durability of hot end components. Pyrochlore, particularly zirconate pyrochlore, is currently a highly promising and widely studied candidate for its extremely low thermal conductivity. However, there are still few pyrochlores that offer both stiffness, insulation, and good thermal expansion properties. In this work, the solidification method was innovatively introduced into the preparation of titanate pyrochlore, and combined it with the compositional design of high-entropy. Through careful composition design and solidification control, the high-density and uniform elements distributed high-entropy titanate pyrochlore ceramics were successfully prepared. These samples possess high hardness (15.88 GPa) and Young’s modulus (295.5 GPa), low thermal conductivity (0.947 W·m?1·K?1), excellent thermal expansion coefficient (11.6 ×10?6/K) and an exquisite balance between stiffness and insulation (E/κ, 312.1 GPa·W?1·m·K), in which the E/κ exhibits the highest value among the current reported works.  相似文献   
4.
《Ceramics International》2022,48(17):24592-24598
Single-phase Al4SiC4 powder with a low neutron absorption cross section was synthesized and mixed with SiC powder to fabricate highly densified SiC ceramics by hot pressing. The densification of SiC ceramics was greatly improved by the decomposition of Al4SiC4 and the formation of aluminosilicate liquid phase during the sintering process. The resulting SiC ceramics were composed of fine equiaxed grains with an average grain size of 2.0 μm and exhibited excellent mechanical properties in terms of a high flexure strength of 593 ± 55 MPa and a fracture toughness of 6.9 ± 0.2 MPa m1/2. Furthermore, the ion-irradiation damage in SiC ceramics was investigated by irradiating with 1.2 MeV Si5+ ions at 650 °C using a fluence of 1.1 × 1016 ions/cm2, which corresponds to 6.3 displacements per atom (dpa). The evolution of the microstructure was investigated by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The breaking of Si–C bonds and the segregation of C elements on the irradiated surface was revealed by XPS, whereas the formation of Si–Si and C–C homonuclear bonds within the Si–C network of SiC grains was detected by Raman spectroscopy.  相似文献   
5.
Two types of transparent Y2O3 ceramics without including large scattering sources such as residual pores, one with very high optical homogeneity (type A) and another one with slightly insufficient optical homogeneity (type B), are purposely prepared, and their optical properties are investigated and compared qualitatively and quantitatively. Type A ceramic exhibits transmittance characteristics with very low internal loss in the visible to infrared wavelength region, while type B ceramic is inferior in various optical performances especially in the short (visible) wavelength region. In type B ceramic, birefringence occurs due to optical inhomogeneity in the visible region, resulting in a decrease in the extinction ratio. Non-uniform refractive index distribution is also observed in the Schlieren image of type B ceramic, hence the laser beam quality through that material is degraded. This study proved the importance of optical homogeneity of transparent ceramics and clarified the problems in actual applications.  相似文献   
6.
《Ceramics International》2022,48(9):12118-12125
In this study, (Cu1/3Nb2/3)4+ complex cation and BaO–ZnO–B2O3 glass frit were adopted to solve the high sintering temperature and poor temperature stability of Ba3Nb4Ti4O21 ceramics. It is shown that pure Ba3Nb4Ti4O21 phase was formed when Ti site was partially replaced by (Cu1/3Nb2/3)4+ cation. The increasing number of dopants decreases the dielectric polarizability, correspondingly, the dielectric constant and temperature coefficient of the resonance frequency values are reduced consistently. The variation of the Q × f value is determined by internal ionic packing fraction and external sintering densification. The (Cu1/3Nb2/3)4+ cation effectively decreases the suitable sintering temperature from 1200 to 1050 °C while greatly improving the temperature stability. BaO–ZnO–B2O3 glass was used to further improve the low-temperature sintering characteristics of Ba3Nb4Ti4O21 ceramics. It is proven that the addition of glass frits effectively decreases the temperature to 925 °C with combinational excellent microwave dielectric properties: εr ~55.6, Q × f ~5700 GHz, τf ~3 ppm/°C, making the Ba3Nb4Ti4O21 ceramics promising in the applications of low-temperature cofired ceramic technology.  相似文献   
7.
Glass-ceramic, which has negligible dielectric loss, high mechanical strength, excellent drop resistance, low CTE, and low density for lightweight design, is the best option for the back cover of mobile devices in the 5 G era. Herein, the effect of P2O5 on the phase separation and crystallization of MgO–Al2O3–SiO2-TiO2 glass-ceramics is studied. The incorporation of P2O5 in the glass structure leads to phase separation, in which the P and Mg-enriched phase was formed in the glass matrix, and promotes the increase of Tg. With the increase of P2O5 content, the precipitated crystals change significantly. First, the silicate crystals (Mg2SiO4) disappear, whereas the phosphate crystals (LiMgPO4) emerge when 2 mol% P2O5 is introduced. Second, titanate crystal (MgTi2O5) can not be observed when 4 mol% P2O5 is introduced. The Ti5O9 crystals appear simultaneously with LiMgPO4 crystals and transform to rutile TiO2 crystals at high temperature. Interestingly, the needle-like rutile TiO2 crystals, which is 300 nm long and 20 nm wide, have been found in a glass with 4 mol% P2O5. The large L/D ratio of needle-like crystals increases the hardness significantly from 6.08 GPa to 7.14 GPa. Similar to other fiber reinforced composites, this needle-like crystals provide a new strategy to improve the mechanical properties of glass ceramics.  相似文献   
8.
The state-of-the-art protonic ceramic conductor BaZr0.8Y0.2O3-δ (BZY20) requires an extremely high sintering temperature (≥1700 °C) to achieve the desired relative density and microstructure necessary to function as a proton conducting electrolyte. In this work, we developed a cold sintering pretreatment assisted moderate-temperature sintering method for the fabrication of high-quality pure BZY20 pellets. BZY20 pellets with high relative density of ~94% were fabricated with a final sintering temperature of 1500 °C (200 °C lower than the traditional sintering temperature). A comparison with BZY20 control samples indicated that the proper amount of BaCO3 introduced on the BZY20 particle surface and the high green density achieved by cold sintering pretreatment were the main drivers for lowering the sintering temperature. The electrical conductivity measurement by electrochemical impedance spectroscopy showed that the as-prepared BZY20 pellets have a proton conductivity comparable to the state-of-the-art values. The cold sintering pretreatment outlined in this work has the potential to lower the sintering temperatures for similar types of protonic ceramic materials under consideration for a wide range of energy conversion and storage applications.  相似文献   
9.
Given the superior thermal stability and electromagnetic features, continuous Si–B–(C)–N ceramic fibers have displayed great potential to fulfill the increasing demand for the high-temperature structural and functional materials. Manufacture of such ceramic fibers depends heavily upon the design of processable polymer precursors. Herein, a class of polyborosilazanes (PBSZs) with high spinnability were created through a facile one-pot synthesis. The trade-off between spinnability and ceramic yield of PBSZs was overcome by using heptamethyldisilazane and hexamethyldisilazane as the co-condensing agents to polymerize silicon and boron chloride monomers. The optimal PBSZs can fabricate continuous Si–B–C–N fibers with homogeneous diameter of 7.9 ± 0.5 μm and high ceramic yield of 80 wt%. Experimental characterization and quantum chemical computation revealed the mechanistic pictures of the impact of pendant groups on the polycondensation, melt spinning, and pyrolyzing process. These insights improve our understanding of spinnable pre-ceramic polymers for exploiting high-performance nitride ceramic fibers.  相似文献   
10.
《Ceramics International》2021,47(23):32641-32647
Multi-components and equimolar rare earth monosilicates, (Y1/3Dy1/3Er1/3)2SiO5, (Y1/3Dy1/3Lu1/3)2SiO5, (Y1/4Dy1/4Ho1/4Er1/4)2SiO5 and (Yb1/4Dy1/4Ho1/4Er1/4)2SiO5, were prepared by solid-state reactions and the following hot-pressing. Dense microstructures with uniform elemental distributions were obtained for all samples. These investigated multi-components monosilicates exhibit low thermal conductivities and similar coefficients of thermal expansion with SiC. Moreover, they exhibit high corrosion resistances in 1400 °C water vapor, especially, four-components (Y1/4Dy1/4Ho1/4Er1/4)2SiO5 and (Yb1/4Dy1/4Ho1/4Er1/4)2SiO5 experienced almost invariable weights after small weight losses during the initial 0.5 h. All those results indicate that multi-components rare earth monosilicates are promising candidates of environmental barrier coatings for SiC/SiC composites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号